Time: 11/2 Hours

SECOND-TERM

MATHEMATICS & STATISTICS

Subject Code

H 4 6 0

Total No. of Questions: 16 (Printed Pages: 4)

Maximum Marks: 40

INSTRUCTIONS: (i)

All questions are compulsory.

- (ii) The question paper consists of 16 questions, divided into 4 Sections A, B, C and D.
- (iii) Question Nos. 1 to 4 are VSA type and carry 1 mark each.

Question Nos. 5 to 8 are SA-I type and carry 2 marks each.

Question Nos. 9 to 12 are SA-II type and carry 3 marks each.

Question Nos. 13 to 16 are LA-type and carry 4 marks each.

- (iv) There is no overall choice in the paper. However internal choice is provided in 1 question of 3 marks and 1 question of 4 marks. In questions with choices only one of the choice is to be attempted.
- (v) Use of a calculator is not permitted.
- (vi) Log tables will be supplied on request.
- (vii) Graphs should be drawn on the answer paper only.

SECTION 'A'

Question Nos. 1 to 4 carry one mark each.

1. Find the order and degree of the differential equation :

$$\frac{d^2y}{dx^2} = \sqrt[3]{1 + \left(\frac{dy}{dx}\right)^2}$$

2. Define "Sinking fund".

3. If
$$P(A) = \frac{3}{8}$$
, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$, then find $P(A/B)$.

4. Evaluate: $\int e^{2x+3} dx$.

SECTION 'B'

Question Nos. 5 to 8 carry two marks each.

5. Evaluate
$$\int_0^{\pi/4} \tan^2 x \, dx$$

6. Write the constraints of the linear programming problem whose graphical solution is given below:

- A coin is tossed 4 times. Find the probability of obtaining at least one head.
- 8. Evaluate : $\int \cot x \log(\sin x) dx$.

SECTION 'C'

Question Nos. 9 to 12 carry three marks each.

9. Evaluate:

$$\int_2^7 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} dx.$$

10. Solve the differential equation :

$$x (1 - y^2) dx - y (1 - x^2) dy = 0.$$
Or

Form the differential equation by eliminating the arbitrary constants A and B from the general solution :

$$y = Ae^x + Be^{-x} + x^2.$$

- Find the amount of annuity of Rs. 18,000 payable at the end of every quarter year for 6 years, if money is worth 12% per annum compounded quarterly.
 (Given: (1.03)⁶ = 1.193, (1.03)²⁴ = 2.029)
- 12. Shoes are produced by two machines A and B of which 60% of the shoes are produced by machine A and the rest by machine B. It is found that 10% of shoes produced by machine A are defective, 20% of the shoes produced by machine B are defective. If a shoe taken at random is found to be defective, what is the probability that the shoe was produced by machine A?

SECTION 'D'

Question Nos. 13 to 16 carry four marks each.

13. Solve the following linear programming problem graphically :

Maximise Z = 5x + 10y

Subject to the constraints

$$x + 2y \le 120; \ x - 2y \ge 0$$

$$x + y \ge 60; x, y \ge 0.$$

14. Shreenika purchases a scooter by taking loan of Rs. 50,570 which is repaid in 18 annual equal instalments at the rate of 4% per annum compounded annually. The first instalment being paid at the end of each year. Find the amount of each instalment.

(Given:
$$(1.04)^{-10} = 0.6761$$
, $(1.04)^{-18} = 0.4943$, $(1.08)^{-10} = 0.4634$)

15. Show that the following differential equation is homogenous and hence solve it :

$$\frac{xdy}{dx} = x + y$$

16. Evaluate :
$$\int \frac{e^x dx}{(e^x - 1)(e^x + 3)(2e^x - 1)}$$
Or

Evaluate: $\int e^{2x} \cos 3x \, dx$.