Time: 11/2 Hours

SECOND TERM

MATHEMATICS AND

STATISTICS

Subject Code

H 6

Total No. of Questions: 16

(Printed Pages: 4)

Maximum Marks: 40

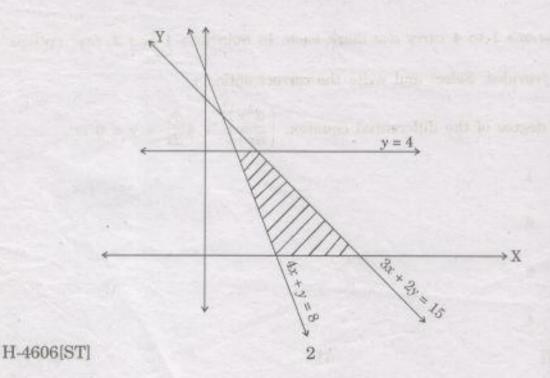
INSTRUCTIONS: (i) Questions 1 and 2 are MCQ type and carry one mark each. Questions 3 and 4 are VSA type and carry one mark each.

Questions 5 to 8 are SAI type and carry two marks each. (ii) Questions 9 to 12 are SAII type and carry 3 marks each. Questions 13 to 16 are LA type and carry 4 marks each.

Section A

Questions 1 to 4 carry one mark each. In questions 1 and 2, four options are provided. Select and write the correct option :

- The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + 4\frac{dy}{dx} + y = 0$ is 1.
 - (i) 1
 - (11)
 - 3
 - (iv)


$$2. \qquad \int \cot x. dx = \dots$$

- (i) $-\csc^2 x + c$
- (ii) $\log |\sin x| + c$
- (iii) cosec x. cot x + c
- (iv) $\log |\sec x| + c$
- 3. A and B are two independent events such that P(A) = 0.3 and P(B) = 0.25. Find $P(A \cap B)$.
- 4. Evaluate $\int_{1}^{2} 3x^2 dx$.

Section B

Questions 5 to 8 carry two marks each :

5. Write the constraints of the linear programming problem whose graphical solution is given below:

6. Integrate with respect to x:

$$\int \frac{2 - 3\sin x}{\cos^2 x} dx$$

- 7. From a well shuffled pack of 52 cards, two cards are drawn at random one after the other without replacement. Find the probability that both the cards are spade cards.
- Integrate the following with respect to x :

$$\int \frac{e^{2x}}{e^{2x} + 3} \cdot dx$$

Section C

Questions 9 to 12 carry 3 marks each :

- 9. A factory has two machines A and B. Machine A produces 60% of the output and machine B produces 40% of the items at the output. 2% of the items produced by machine A and 3% of the items produced by machine B are defective. One item is chosen at random from the output and is found to be defective. What is the probability that it was produced by machine B?
- 10. Evaluate $\int_{0}^{\pi/2} x \cdot \sin 2x \cdot dx$.
- 11. Solve the differential equation (xy + x) dy + (xy + y) dx = 0. Also find the particular solution when x = y = 0.

 H-4606[ST]

 3

 P.T.O.

12. Integrate with respect to x:

$$\int \frac{2x+3}{(x-3)(x+1)} dx$$
Or

$$\int \frac{1}{5x^2 - 4x - 1} dx$$

Section D

Questions 13 to 16 carry 4 marks each.

13. Solve the following linear programming problem graphically.

Maximize Z = 7x + 4y

Subject to the constraints $2x + y \le 8$; $2x + 3y \le 12$

$$4x + y \ge 4; \quad x, y \ge 0.$$

14. Find the present value of an annuity of ₹ 1,200 payable at the end of each 4 months for 5 years, if money is worth 6% p.a. converted semiannually (use log tables).

How much amount should a company set aside at the end of each year if it has to buy a machine expected to cost ₹ 2,00,000 at the end of 6 yrs, when the rate of interest is 8% p.a. compounded annually. (use log tables).

15. Solve the following differential equation :

$$(x^2 + y^2)\frac{dy}{dx} = xy$$

16. A sum of ₹ 5,000 is deposited into an account at the beginning of each year over a period of 4 years. If the rate of interest is 8% p.a. compounded annually, find the future value of the annuity. (use log tables).

H-4606[ST]